Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.283
Filtrar
1.
Anticancer Drugs ; 35(1): 76-80, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37067984

RESUMO

Lung cancer is the malignancy with the highest morbidity and mortality worldwide. Approximately 60% of non-small cell lung cancer (NSCLC) presents driver alterations most of which are targetable. Nowadays, limited clinical data are available regarding the efficacy of epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors in patients with NSCLC harboring uncommon EGFR mutations, considering their heterogeneity. Herein, we report a rare case of EGFR-mutated lung adenocarcinoma which has developed into squamous cell carcinoma with uncommon EGFR (Ex18) compound mutations and phosphatidylinositol 3-kinase mutation receiving afatinib at the forefront.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Receptores ErbB/genética , Mutação , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Receptores de Fatores de Crescimento/genética
2.
Turk J Gastroenterol ; 34(2): 118-127, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36445057

RESUMO

BACKGROUND: Rat sarcoma virus mutational status guides first-line treatment in metastatic colorectal cancer. This study was a multi center, multi-country ambispective, observational study in the Middle East and North Africa assessing regional rat sarcoma virus testing practices in newly diagnosed patients. METHODS: The retrospective arm (2011-2014) included adults with metastatic colorectal cancer who had initiated first-line therapy with ≥1 post-baseline visit and survival data. The prospective arm (2014-2019) enrolled newly diagnosed patients with histologically proven metastatic colorectal cancer with ≥1 measurable lesion per Response Evaluation Criteria in Solid Tumors, and tissue availability for biomarker analysis. Data look-back and follow-up were 2 years; the rate of RAS mutation was evaluated. RESULTS: RAS testing was ordered for patients in retrospective (326/417) and prospective (407/500) studies. In the former, testing was typically prescribed after first-line treatment initiation, significantly more in patients with stage IV disease (P < .005), resulting in the addition of targeted therapy (41.8% anti-epidermal growth factor receptor, 30.2% anti-vascular endothelial growth factor) in wild-type metastatic colorectal cancer, and significantly impacted the treatment of left-sided tumors (P = .037). In the latter, 58.4% were RAS wild-type; 41.6% were RAS mutant. Non-prescription of RAS testing was attributed to test unavailability, financial, or medical rea sons; predictors of testing prescription were older age, primary tumor in ascending colon, and high tumor grade. RAS status knowledge resulted in the addition of anti-vascular endothelial growth factor (20.4%) or anti-epidermal growth factor receptor therapy (21.2%). CONCLUSION: Before 2014, RAS testing in patients with colorectal cancer in the Middle East and North Africa was often performed after first-line treatment. Testing is more routine in newly diagnosed patients, potentially shifting early treatment patterns.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Colorretais/genética , Fatores de Crescimento Endotelial/genética , Fatores de Crescimento Endotelial/uso terapêutico , Mutação , Estudos Prospectivos , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/uso terapêutico , Estudos Retrospectivos , Sistema de Registros
3.
Cancer Lett ; 531: 83-97, 2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35157971

RESUMO

Lung adenocarcinoma is the most common form of lung cancer, accounting for 60% of non-small cell lung cancer (NSCLC) cases in Asian patients. Importantly, nearly half of these patients have epithelial growth factor receptor (EGFR) mutations. Though EGFR-tyrosine kinase inhibitors (EGFR-TKIs) are recommended as the first-line therapy for NSCLC patients, the development of resistance reduces their efficiency and limits their application. As the complicated and heterogeneous mechanism of acquired resistance among individuals, the efficiency of anti-angiogenesis therapy, immune checkpoint inhibitors, or chemo-radiotherapies is rather less promising. In this research, we investigated the role of the tumor stem cell marker DCLK1 in EGFR-TKI resistance of lung adenocarcinoma. We discovered that DCLK1 was critical in maintaining the stemness of tumor cells through the Wnt/ß-Catenin pathway, which was conducive to the development of EGFR-TKI resistance. Inhibiting DCLK1 activity restored the sensitivity of TKI-resistant tumor cells and organoids. Moreover, our study showed that DCLK1 inhibitor had a synergistic effect in controlling tumor growth when combined with EGFR-TKIs. Overall, our study provides new insights into EGFR-TKI resistant lung adenocarcinoma through inhibition of DCLK1 expression.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Quinases Semelhantes a Duplacortina , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Receptores de Fatores de Crescimento/genética , beta Catenina/genética
4.
Toxicol Appl Pharmacol ; 437: 115886, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35041852

RESUMO

Many small molecule kinase inhibitors (SMKIs), used predominantly in cancer therapy, have been implicated in serious clinical cardiac adverse events, which means that traditional preclinical drug development assays were not sufficient for identifying these cardiac liabilities. To improve clinical cardiac safety predictions, the effects of SMKIs targeting many different signaling pathways were studied using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) in combined assays designed for the detection of both electrophysiological (proarrhythmic) and non-electrophysiological (non-proarrhythmic) drug-induced cardiotoxicity. Several microplate-based assays were used to quantitate cell death, apoptosis, mitochondrial damage, energy depletion, and oxidative stress as mechanism-based non-electrophysiological cardiomyocyte toxicities. Microelectrode arrays (MEA) were used to quantitate in vitro arrhythmic events (iAEs), field potential duration (FPD) prolongation, and spike amplitude suppression (SAS) as electrophysiological effects. To enhance the clinical relevance, SMKI-induced cardiotoxicities were compared by converting drug concentrations into multiples of reported clinical maximum therapeutic plasma concentration, "FoldCmax", for each assay. The results support the conclusion that the combination of the hPSC-CM based electrophysiological and non-electrophysiological assays have significantly more predictive value than either assay alone and significantly more than the current FDA-recommended hERG assay. In addition, the combination of these assays provided mechanistic information relevant to cardiomyocyte toxicities, thus providing valuable information on potential drug-induced cardiotoxicities early in drug development prior to animal and clinical testing. We believe that this early information will be helpful to guide the development of safer and more cost-effective drugs.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Inibidores de Proteínas Quinases/química , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo
5.
Mol Pharmacol ; 100(5): 491-501, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34470776

RESUMO

The neurotrophin growth factors bind and activate two types of cell surface receptors: the tropomyosin receptor kinase (Trk) family and p75. TrkA, TrkB, and TrkC are bound preferentially by nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 (NT3), respectively, to activate neuroprotective signals. The p75 receptors are activated by all neurotrophins, and paradoxically in neurodegenerative disease p75 is upregulated and mediates neurotoxic signals. To test neuroprotection strategies, we engineered NT3 to broadly activate Trk receptors (mutant D) or to reduce p75 binding (mutant RK). We also combined these features in a molecule that activates TrkA, TrkB, and TrkC but has reduced p75 binding (mutant DRK). In neurodegenerative disease mouse models in vivo, the DRK protein is a superior therapeutic agent compared with mutant D, mutant RK, and wild-type neurotrophins and protects a broader range of stressed neurons. This work rationalizes a therapeutic strategy based on the biology of each type of receptor, avoiding activation of p75 toxicity while broadly activating neuroprotection in stressed neuronal populations expressing different Trk receptors. SIGNIFICANCE STATEMENT: The neurotrophins nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 each can activate a tropomyosin receptor kinase (Trk) A, TrkB, or TrkC receptor, respectively, and all can activate a p75 receptor. Trks and p75 mediate opposite signals. We report the engineering of a protein that activates all Trks, combined with low p75 binding, as an effective therapeutic agent in vivo.


Assuntos
Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroproteção/fisiologia , Engenharia de Proteínas/métodos , Receptor trkA/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Animais , Axotomia/efeitos adversos , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fatores de Crescimento Neural/administração & dosagem , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/genética , Neuroproteção/efeitos dos fármacos , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/metabolismo , Receptor trkA/genética , Receptores de Fatores de Crescimento/genética
6.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34424268

RESUMO

Stromal-derived follicular dendritic cells (FDCs) are essential for germinal centers (GCs), the site where B cells maturate their antibodies. FDCs present native antigen to B cells and maintain a CXCL13 gradient to form the B cell follicle. Yet despite their essential role, the transcriptome of human FDCs remains undefined. Using single-cell RNA sequencing and microarray, we provided the transcriptome of these enigmatic cells as a comprehensive resource. Key genes were validated by flow cytometry and microscopy. Surprisingly, marginal reticular cells (MRCs) rather than FDCs expressed B cell activating factor (BAFF). Furthermore, we found that human FDCs expressed TLR4 and can alter antigen availability in response to pathogen-associated molecular patterns (PAMPs). High expression of PD-L1 and PD-L2 on FDCs activated PD1 on T cells. In addition, we found expression of genes related to T cell regulation, such as HLA-DRA, CD40, and others. These data suggest intimate contact between human FDCs and T cells.


Assuntos
Apresentação de Antígeno , Linfócitos B/imunologia , Células Dendríticas Foliculares/fisiologia , Imunidade Adaptativa , Células Apresentadoras de Antígenos/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Cadeias alfa de HLA-DR/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Jurkat , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
7.
Biomed Pharmacother ; 140: 111765, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34058438

RESUMO

Xenocoumacin (Xcn) 1 and 2 are the major antibiotics produced by the insect-pathogenic bacterium Xenorhabdus nematophila. Although the antimicrobial activity of Xcns has been explored, research regarding their action on mammalian cells is lacking. We aimed to investigate the action of Xcns in the context of inflammation and angiogenesis. We found that Xcns do not impair the viability of primary endothelial cells (ECs). Particularly Xcn2, but not Xcn1, inhibited the pro-inflammatory activation of ECs: Xcn2 diminished the interaction between ECs and leukocytes by downregulating cell adhesion molecule expression and blocked critical steps of the NF-κB activation pathway including the nuclear translocation of NF-κB p65 as well as the activation of inhibitor of κBα (IκBα) and IκB kinase ß (IKKß). Furthermore, the synthesis of pro-inflammatory mediators and enzymes, nitric oxide (NO) production and prostaglandin E2 (PGE2), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was evaluated in leukocytes. The results showed that Xcns reduced viability, NO release, and iNOS expression in activated macrophages. Beyond these anti-inflammatory properties, Xcn2 effectively hindered pro-angiogenic processes in HUVECs, such as proliferation, undirected and chemotactic migration, sprouting, and network formation. Most importantly, we revealed that Xcn2 inhibits de novo protein synthesis in ECs. Consequently, protein levels of receptors that mediate the inflammatory and angiogenic signaling processes and that have a short half-live are reduced by Xcn2 treatment, thus explaining the observed pharmacological activities. Overall, our research highlights that Xcn2 exhibits significant pharmacological in vitro activity regarding inflammation and angiogenesis, which is worth to be further investigated preclinically.


Assuntos
Inibidores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Benzopiranos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Selectina E/genética , Selectina E/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/fisiologia , Camundongos , NF-kappa B/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores de Fatores de Crescimento/biossíntese , Receptores de Fatores de Crescimento/genética , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
8.
Sci Rep ; 11(1): 8092, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854153

RESUMO

Elevated glucocorticoid level in the early postnatal period is associated with glucocorticoid therapy prescribed at preterm delivery most often has severe long-lasting neurodevelopmental and behavioural effects. Detailed molecular mechanisms of such programming action of antenatal glucocorticoids on behaviour are still poorly understood. To address this question we studied neurotrophins: Bdnf, Nt-3, Ngf and their receptors: p75ngfr, Sorcs3 expression changes after subcutaneous dexamethasone (DEX) 0.2 mg/kg injection to P2 rat pups. Neurotrophins expression level was studied in the hippocampus (HPC). Disturbances in these brain regions have been implicated in the emergence of multiple psychopathologies. p75ngfr and Sorcs3 expression was studied in the brainstem-region where monoamine neurons are located. Immunohistochemically P75NTR protein level changes after DEX were investigated in the brainstem Locus Coereleus norepinephrine neurons (NE). In the first hours after DEX administration elevation of neurotrophins expression in HPC and decline of receptor's expression in the NE brainstem neurons were observed. Another critical time point during maturation is adolescence. Impact of elevated glucocorticoid level in the neonatal period and unpredictable stress (CMUS) at the end of adolescence on depressive-like behaviour was studied. Single neonatal DEX injection leads to decrease in depressive-like behaviour, observed in FST, independently from chronic stress. Neonatal DEX administration decreased Ntf3 and SorCS1 expression in the brainstem. Also Bdnf mRNA level in the brainstem of these animals didn't decrease after FST. CMUS at the end of adolescence changed p75ngfr and SorCS3 expression in the brainstem in the animals that received single neonatal DEX administration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/etiologia , Dexametasona/efeitos adversos , Proteínas do Tecido Nervoso/metabolismo , Neurotrofina 3/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Animais , Animais Recém-Nascidos , Tronco Encefálico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Dexametasona/administração & dosagem , Modelos Animais de Doenças , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/genética , Neurotrofina 3/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Superfície Celular/genética , Receptores de Fatores de Crescimento/genética , Estresse Psicológico/etiologia
9.
Cell Signal ; 81: 109936, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33529756

RESUMO

The nerve growth factor precursor (proNGF) activates p75NTR receptor and promotes cell death in different tissues, yet this pathophysiological effect is not fully described in the bladder. The aim of this study was to identify the biological effect of proNGF/p75NTR activation on urothelial and smooth muscle (SM) cells of rodents' bladder. Cell viability was assessed by MTT assay which showed a significant reduction in urothelial viability after 24 h of incubation with proNGF in culture medium [5 or 10 nM], an effect not seen in SM cells. Western blot analysis on cellular protein extracts showed increased expression of the transmembrane TNF-α and activation of RhoA in urothelial cells exposed to proNGF with no evidence of a nuclear translocation of NF-κB assessed by western blotting on nuclear extracts and immunofluorescence. The activation of p75NTR-death domain related pathways in urothelial cells such as TNF-α or RhoA had a downstream effect on NO release and the junctional protein occludin, as estimated respectively by colorimetric and western blotting. On the other hand, proNGF did not induce TNF-α or RhoA expression in SM cells, but induced a significant NF-κB nuclear translocation. ProNGF had a different impact on SM as evidenced by a significant dose- and time-dependent increase in SM proliferation and migration examined by MTT test and cell migration assay. Together, our results indicate that activation of proNGF/p75NTR axis induces degenerative changes to the urothelial layer impacting its barrier and signaling integrity, while promoting adaptive proliferative changes in detrusor SM cells that can interfere with the contractile phenotype essential for proper bladder function.


Assuntos
Miócitos de Músculo Liso/metabolismo , Fatores de Crescimento Neural/metabolismo , Precursores de Proteínas/metabolismo , Transdução de Sinais , Bexiga Urinária/metabolismo , Urotélio/metabolismo , Animais , Movimento Celular , Proliferação de Células , Feminino , Miócitos de Músculo Liso/patologia , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Precursores de Proteínas/genética , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Bexiga Urinária/patologia , Urotélio/patologia
10.
PLoS Biol ; 19(1): e3001029, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395410

RESUMO

Endosomal trafficking of receptors and associated proteins plays a critical role in signal processing. Until recently, it was thought that trafficking was shut down during cell division. Thus, remarkably, the regulation of trafficking during division remains poorly characterized. Here we delineate the role of mitotic kinases in receptor trafficking during asymmetric division. Targeted perturbations reveal that Cyclin-dependent Kinase 1 (CDK1) and Aurora Kinase promote storage of Fibroblast Growth Factor Receptors (FGFRs) by suppressing endosomal degradation and recycling pathways. As cells progress through metaphase, loss of CDK1 activity permits differential degradation and targeted recycling of stored receptors, leading to asymmetric induction. Mitotic receptor storage, as delineated in this study, may facilitate rapid reestablishment of signaling competence in nascent daughter cells. However, mutations that limit or enhance the release of stored signaling components could alter daughter cell fate or behavior thereby promoting oncogenesis.


Assuntos
Aurora Quinases/fisiologia , Proteína Quinase CDC2/fisiologia , Mitose/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Animais Geneticamente Modificados , Aurora Quinases/genética , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/metabolismo , Ciona intestinalis/embriologia , Ciona intestinalis/genética , Embrião não Mamífero , Mitose/genética , Transporte Proteico/genética , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Transdução de Sinais/genética , Distribuição Tecidual/genética
11.
Reprod Domest Anim ; 56(2): 351-359, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33259113

RESUMO

Ovarian response of collared peccaries (Pecari tajacu), after hormonal stimulation with gonadotropin association (eCG/hCG), was accessed by both gene expression and follicular development. Thus, collared peccaries (n = 8) were treated with the dose used for sows (swine dose, SWD) or with dose adjusted for peccary's weight (allometric dose, ALD). The gene expression of receptors was evaluated for both gonadotropins (FSHR and LHCGR) and growth factors (proteins codified by TGFßR-1, BMPR1-A and BMPR2 genes) in antral follicles, cortex and corpora haemorrhagica (CH). Five days after gonadotropin injection, all females presented CH. The ovulation rate was similar (p > .05) between SWD (4.00 ± 1.17) and ALD (2.50 ± 0.43) group. The total number of follicles per animal and amounts of small (<3 mm), medium (3-5 mm) and large (>5 mm) follicles was similar among groups. However, SWD produced large follicles heavier than ALD group, as accessed by weight of follicular wall biopsies. Ovarian follicles expressed both gonadotropin and growth factor receptors at levels which are independent from gonadotropin dose. In conclusion, the two gonadotropin doses (SWD and ALD) can be used for ovarian stimulation of collared peccary. Additionally, FSH and growth factors (TGFßR-1, BMPR1-A and BMPR2) receptors are more expressed in the early follicle development, while LH receptor seems to be more important in the final of follicular growth.


Assuntos
Artiodáctilos/fisiologia , Gonadotropina Coriônica/farmacologia , Ovário/efeitos dos fármacos , Animais , Peso Corporal , Gonadotropina Coriônica/administração & dosagem , Feminino , Folículo Ovariano/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Receptores da Gonadotropina/genética , Receptores da Gonadotropina/metabolismo , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo
12.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(11): 1438-1445, 2020 Nov 15.
Artigo em Chinês | MEDLINE | ID: mdl-33191703

RESUMO

OBJECTIVE: To investigate the effects of silencing P75 neurotrophin receptor (P75NTR) and nerve growth factor (NGF) overexpression on the proliferative activity and ectopic osteogenesis ability of bone marrow mesenchymal stem cells (BMSCs) combined with demineralized bone matrix for heterotopic osteogenesis. METHODS: BMSCs of Sprague Dawley (SD) rats were cultured and passaged by adherent isolation method. The third generation BMSCs were transfected with lentivirus mediated P75NTR gene silencing (group B), NGF overexpression gene (group C), P75NTR silencing and NGF overexpression double genes (group D), respectively, and untransfected cells as control (group A). After 7 days of transfection, the expression of fluorescent protein of the target gene was observed by fluorescence microscope; cell counting kit 8 method was used to detect the cells activity for 8 days after transfection; the expressions of P75NTR and NGF proteins in each group were detected by Western blot. The adhesion of BMSCs to demineralized bone matrix (DBM) was observed by inverted phase contrast microscope and scanning electron microscope after transfection of p75NTR silencing and NGF overexpression double genes. After transfection, BMSCs and DBM were co-cultured to prepare 4 groups of tissue engineered bone, which were respectively placed in the dorsal subcutaneous tissue of 8-week-old SD rats to construct subcutaneous ectopic osteogenesis model ( n=6). HE staining was performed at 4 and 8 weeks after operation. ALP staining was used to observe the formation of calcium nodules at 8 weeks after operation. The expressions of Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) were detected by real-time fluorescent quantitative PCR. RESULTS: At 7 days after transfection, there was no fluorescence expression in group A, red fluorescence expression was seen in group B, green fluorescence expression in group C, and red-green compound fluorescence expression in group D. The fluorescence expression rate of target gene was about 70%. Western blot detection showed that the relative expression of P75NTR protein in groups A and C was significantly higher than that in groups B and D, and the relative expression of NGF protein in groups C and D was significantly higher than that in groups A and B ( P<0.05). With the passage of time, the cell proliferation activity increased in all groups, especially in group D, which was significantly higher than that in group A at 3-8 days ( P<0.05). The results of inverted phase contrast microscope and scanning electron microscope showed that BMSCs could adhere well to DBM. In the subcutaneous ectopic osteogenesis experiment, HE staining showed that at 4 and 8 weeks after operation, the more bone tissue was formed in group D than in the other 3 groups. ALP staining showed that group D had the highest ALP activity and better osteogenic expression. Compared with group A, the relative expressions of Runx2, ALP, and OCN mRNAs in group D were significantly higher than those in group A ( P<0.05). CONCLUSION: Silencing P75NTR and NGF overexpression double genes co-transfected BMSCs with DBM to construct tissue engineered bone has good ectopic osteogenic ability. By increasing NGF level and closing P75NTR apoptosis channel, it can not only improve cell activity, but also promote bone tissue regeneration.


Assuntos
Células-Tronco Mesenquimais , Proteínas do Tecido Nervoso , Receptores de Fatores de Crescimento , Animais , Células da Medula Óssea , Matriz Óssea , Diferenciação Celular , Células Cultivadas , Inativação Gênica , Lentivirus , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Osteogênese , Ratos , Ratos Sprague-Dawley , Receptor de Fator de Crescimento Neural , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Transfecção
13.
Biochem J ; 477(20): 4053-4070, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33043964

RESUMO

The tropomyosin-related kinase (Trk) family consists of three receptor tyrosine kinases (RTKs) called TrkA, TrkB, and TrkC. These RTKs are regulated by the neurotrophins, a class of secreted growth factors responsible for the development and function of neurons. The Trks share a high degree of homology and utilize overlapping signaling pathways, yet their signaling is associated with starkly different outcomes in certain cancers. For example, in neuroblastoma, TrkA expression and signaling correlates with a favorable prognosis, whereas TrkB is associated with poor prognoses. To begin to understand how activation of the different Trks can lead to such distinct cellular outcomes, we investigated differences in kinase activity and duration of autophosphorylation for the TrkA and TrkB tyrosine kinase domains (TKDs). We find that the TrkA TKD has a catalytic efficiency that is ∼2-fold higher than that of TrkB, and becomes autophosphorylated in vitro more rapidly than the TrkB TKD. Studies with mutated TKD variants suggest that a crystallographic dimer seen in many TrkA (but not TrkB) TKD crystal structures, which involves the kinase-insert domain, may contribute to this enhanced TrkA autophosphorylation. Consistent with previous studies showing that cellular context determines whether TrkB signaling is sustained (promoting differentiation) or transient (promoting proliferation), we also find that TrkB signaling can be made more transient in PC12 cells by suppressing levels of p75NTR. Our findings shed new light on potential differences between TrkA and TrkB signaling, and suggest that subtle differences in signaling dynamics can lead to substantial shifts in the cellular outcome.


Assuntos
Neuroblastoma/metabolismo , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Domínio Catalítico , Diferenciação Celular/genética , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Cinética , Mutação , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/enzimologia , Neuroblastoma/genética , Células PC12 , Fosforilação , Domínios Proteicos , RNA Interferente Pequeno , Ratos , Receptor trkA/química , Receptor trkA/genética , Receptor trkB/química , Receptor trkB/genética , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Proteínas Recombinantes , Transdução de Sinais/efeitos dos fármacos
14.
Int J Mol Sci ; 21(19)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019660

RESUMO

The carotid body may undergo plasticity changes during development/ageing and in response to environmental (hypoxia and hyperoxia), metabolic, and inflammatory stimuli. The different cell types of the carotid body express a wide series of growth factors and corresponding receptors, which play a role in the modulation of carotid body function and plasticity. In particular, type I cells express nerve growth factor, brain-derived neurotrophic factor, neurotrophin 3, glial cell line-derived neurotrophic factor, ciliary neurotrophic factor, insulin-like-growth factor-I and -II, basic fibroblast growth factor, epidermal growth factor, transforming growth factor-α and -ß, interleukin-1ß and -6, tumor necrosis factor-α, vascular endothelial growth factor, and endothelin-1. Many specific growth factor receptors have been identified in type I cells, indicating autocrine/paracrine effects. Type II cells may also produce growth factors and express corresponding receptors. Future research will have to consider growth factors in further experimental models of cardiovascular, metabolic, and inflammatory diseases and in human (normal and pathologic) samples. From a methodological point of view, microarray and/or proteomic approaches would permit contemporary analyses of large groups of growth factors. The eventual identification of physical interactions between receptors of different growth factors and/or neuromodulators could also add insights regarding functional interactions between different trophic mechanisms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Corpo Carotídeo/metabolismo , Hiperóxia/genética , Hipóxia/genética , Fator de Crescimento Neural/genética , Receptores de Fatores de Crescimento/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Carotídeo/citologia , Fator Neurotrófico Ciliar/genética , Fator Neurotrófico Ciliar/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Neural/metabolismo , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
J Stroke Cerebrovasc Dis ; 29(12): 105316, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32992173

RESUMO

OBJECTIVE: Pharmacological inhibition of GABAergic synapses could represent a potent neuromodulation strategy to activate hippocampal neurons and increase neurotrophic factor gene expression, thus exerting a beneficial effect on post-stroke cognitive impairment (PSCI). The objective of this study was to assess the effects of low-level inhibition of GABAergic synapses on hippocampal gene expressions related to neuroplasticity using the middle cerebral artery occlusion surgery (MCAO) ischemic stroke rat model. METHODS: The animals were randomly assigned to three experimental groups-(1) a sham operated group (SHAM), (2) a control group (CON), and (3) a bicuculline group (BIC). MCAO was performed in the CON and BIC groups. A non-epileptic dose of bicuculline (0.25 mg/kg) was intraperitoneally administered every day for two weeks, starting three days after surgery, to the rats in the BIC group. The mRNA expression of brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB), in relation to neurotrophic intracellular signal, p75, in relation to apoptosis, and synaptophysin (SYP) and PSD-95, synaptic markers, were assessed in the hippocampus ipsilateral to the ischemic site. RESULTS: MCAO increased the gene expression of TrkB. Furthermore, MCAO plus bicuculline administration increased the expression ratio of TrkB to p75 and SYP gene expression. CONCLUSION: Therefore, this study showed that administration of bicuculline after stroke beneficially modulated the expression of crucial genes for neuroplasticity, including BDNF receptors and SYP, in the ipsilateral hippocampus, suggesting that low-level inhibition of GABAergic synapses could lead to beneficial neuromodulation in the hippocampus after stroke.


Assuntos
Bicuculina/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/genética , Inibição Neural/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ratos Sprague-Dawley , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo
16.
Mol Cell ; 80(1): 164-174.e4, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877642

RESUMO

SARS-CoV-2 infections are rapidly spreading around the globe. The rapid development of therapies is of major importance. However, our lack of understanding of the molecular processes and host cell signaling events underlying SARS-CoV-2 infection hinders therapy development. We use a SARS-CoV-2 infection system in permissible human cells to study signaling changes by phosphoproteomics. We identify viral protein phosphorylation and define phosphorylation-driven host cell signaling changes upon infection. Growth factor receptor (GFR) signaling and downstream pathways are activated. Drug-protein network analyses revealed GFR signaling as key pathways targetable by approved drugs. The inhibition of GFR downstream signaling by five compounds prevents SARS-CoV-2 replication in cells, assessed by cytopathic effect, viral dsRNA production, and viral RNA release into the supernatant. This study describes host cell signaling events upon SARS-CoV-2 infection and reveals GFR signaling as a central pathway essential for SARS-CoV-2 replication. It provides novel strategies for COVID-19 treatment.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/genética , Fosfatidilinositol 3-Quinase/genética , Receptores de Fatores de Crescimento/genética , Proteínas Virais/genética , Corticosteroides/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Células CACO-2 , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Receptores de Fatores de Crescimento/antagonistas & inibidores , Receptores de Fatores de Crescimento/metabolismo , SARS-CoV-2 , Transdução de Sinais , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
17.
Sci Rep ; 10(1): 13686, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792564

RESUMO

The neurotrophin receptor p75NTR plays crucial roles in neuron development and regulates important neuronal processes like degeneration, apoptosis and cell survival. At the same time the detailed mechanism of signal transduction is unclear. One of the main hypotheses known as the snail-tong mechanism assumes that in the inactive state, the death domains interact with each other and in response to ligand binding there is a conformational change leading to their exposure. Here, we show that neither rat nor human p75NTR death domains homodimerize in solution. Moreover, there is no interaction between the death domains in a more native context: the dimerization of transmembrane domains in liposomes and the presence of activating mutation in extracellular juxtamembrane region do not lead to intracellular domain interaction. These findings suggest that the activation mechanism of p75NTR should be revised. Thus, we propose a novel model of p75NTR functioning based on interaction with "helper" protein.


Assuntos
Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fatores de Crescimento/química , Receptores de Fatores de Crescimento/metabolismo , Receptores de Fator de Crescimento Neural/química , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Humanos , Ligantes , Lipossomos/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Ratos , Receptores de Fatores de Crescimento/genética , Receptores de Fator de Crescimento Neural/genética
18.
Cell Cycle ; 19(3): 376-389, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31924125

RESUMO

Rupture of weakened blood vessels could lead to severe intracerebral hemorrhage (ICH) and brain injuries. This study was designed to explore the roles of p75 neurotrophin receptor (p75NTR) in neuronal autophagy in ICH rats. An ICH rat model was established, and then gain and loss of functions of p75NTR in rat tissues were performed. Then, the pathologic morphology, water content, and inflammation in brain tissues were assessed. Western blot analysis was applied to detect the levels of inflammatory proteins, apoptosis- and autophagy-related proteins, and the mammalian target of rapamycin (mTOR) pathway-related proteins. Neuronal autophagy was further measured with mTOR activated. In vitro experiments were also performed on brain microvascular endothelial cells (BMECs) and astrocytes. Consequently, we found p75NTR knockdown improved the pathologic morphology with reduced neuron damage, water content, permeability of blood-brain barrier and inflammation in ICH rat brain tissues. Besides, Knockdown of p75NTR decreased neuronal apoptosis and inactivated mTOR signaling pathway, but it elevated the levels of autophagy-related proteins. In vivo results were reproduced in in vitro experiments. This study demonstrated that knockdown of p75NTR could promote neuronal autophagy and reduce neuronal apoptosis via inactivating the mTOR pathway. We hope these findings could provide new therapeutic options for ICH treatment.


Assuntos
Autofagia/genética , Hemorragia Cerebral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/genética , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Hemorragia Cerebral/enzimologia , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Inflamação/genética , Inflamação/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Neurônios/enzimologia , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento/genética , Transdução de Sinais/genética , Regulação para Cima
19.
Int J Biochem Cell Biol ; 116: 105598, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31499176

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterised by an accelerated decline in airway function with age compared to age-matched non-smokers. There is increasing evidence that this is due to small airway disease rather than from emphysema, especially in the early stages of the disease. Small airways (<2 mm internal diameter) are narrowed in COPD with thickening and distortion of the airway wall and peribronchiolar fibrosis. In addition, loss of elasticity in alveolar attachments and mucus hypersecretion contribute to the airway narrowing and closure, leading to air trapping. The mechanisms of peribronchiolar fibrosis are poorly understood and small airway fibroblasts have not been characterised. In small airways of COPD patients the fibroblasts are profibrotic, pro-inflammatory and senescent. There is a reduction in the anti-ageing molecules sirtuin-1 and -6, which are regulated by specific microRNAs that are increased in COPD cells. It is plausible that extracellular vesicles from senescent airway epithelium transmit senescent signals to airway fibroblasts to stimulate fibrosis and inflammation. Small airways fibrosis is a target for new drug development that inhibit growth factor receptors, new antioxidants and particularly those that are targeted to mitochondria and inhibitors of cellular senescence or senolytic therapies.


Assuntos
Doença Pulmonar Obstrutiva Crônica/genética , Enfisema Pulmonar/genética , Fibrose Pulmonar/genética , Sistema Respiratório/metabolismo , Sirtuína 1/genética , Sirtuínas/genética , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Senescência Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Receptores de Fatores de Crescimento/genética , Receptores de Fatores de Crescimento/metabolismo , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/patologia , Transdução de Sinais , Sirtuína 1/metabolismo , Sirtuínas/metabolismo
20.
Methods Mol Biol ; 2019: 85-93, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31359390

RESUMO

Retinoic acid receptor (RAR) signaling plays an important role in embryonic development and homeostasis of many tissues. At the cellular level, activation of RAR signaling often induces cell cycle arrest, differentiation, and apoptosis in many types of cells. Consequently, loss of normal RAR function in the presence of physiological levels of retinoic acid (RA) is often observed in cancers, and pharmacological reactivation of RAR signaling has been considered a promising strategy for cancer therapy and prevention. One of important mechanisms that regulate RAR activity in cancer cells is cross-talk with growth factor signaling, where activation of extracellular signal-regulated kinase (ERK) plays a major role in suppressing RAR transcriptional activity downstream of growth factor receptors. Conversely, strong activation of RAR can induce suppression of ERK activity by inducing expression of a phosphatase specific for ERK to exert tumor-suppressive activity in colorectal cancer. Here, we describe the basic methods to analyze interactions between RAR and ERK signaling in colorectal cancer cells.


Assuntos
Neoplasias Colorretais/genética , Receptores de Fatores de Crescimento/genética , Receptores do Ácido Retinoico/metabolismo , Células CACO-2 , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Sistema de Sinalização das MAP Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...